
www.manaraa.com

CONTROL FROM COMPUTER SCIENCE 1Oded Maler
�CNRS-Verimag, 2, av. de Vignate, 38610, Gi�eres, France.Oded.Maler@imag.frwww-verimag.imag.fr/~maler/

Abstract: This paper presents some of the principles underlying veri�cation andcontroller synthesis techniques for discrete dynamical systems developed withinComputer Science along with some ideas to extend them to continuous and hybridsystems. Hopefully, this will provide control theorists and engineers with an additionalperspective of their discipline as seen by a sympathetic outsider, uncommitted to thecustoms and traditions of the domain. Inter-cultural experience can be frustratingbut sometimes fun.
1. WHAT AM I DOING HERE?Being one of those who have chosen to study com-puter science partly due to an inability to under-stand di�erential equations, I feel a bit uncomfort-able to speak in this conference whose proceedingspages are full of occurrences of that terrifyingR symbol. The scienti�c reason for my presencehere is perhaps being one of those few computerscientists interested in the so-called hybrid systemsresearch which was supposed to bring together theComputer Science and Control communities. Solet me �rst speak about what I understand.
2. WHAT IS VERIFICATION?Veri�cation 2 like Control is concerned with amodel-based design of systems. That is, we wantto build something (\controller") that makes somepart of the real world (the \environment" or\plant") behave in a certain desired way. Insteadof using trial-and-error methods we build a math-ematical model which describes the combined dy-1 This research was supported in part by the EuropeanCommunity project 26270 VHS (Veri�cation of HybridSystems).2 The term \veri�cation" is used as a short approximationfor the disciplines and communities interested in \model-ing, design and analysis of reactive systems" or \formalmethods in system design".

namics of the environment and the controller. Onthis model we can make \gedanken experiments",e.g. manipulation of formulae or numerical simu-lations, to convince ourselves that the controllerindeed makes the environment behave as required.If the model is a good approximation of the realworld, there is a chance that a controller validatedon the model will work properly when imple-mented. 3The description just given does not specify thetype of dynamical models considered. In classicalcontrol these are models of continuous dynamicalsystems in either continuous or discrete time,and since examples of such systems appear inevery decent control textbook, I will move directlyto discrete systems of the type treated by theveri�cation community and illustrate them via anexample.
2.1 The Co�ee MachineSuppose we want to build a machineM which dis-tributes various hot drinks to customers who payfor them by inserting coins. Much of the interac-tion of the machine with its external environment3 I mention this trivial fact because mathematicians, dis-crete and continuous alike, who spend most of their timein the abstract world, sometime forget it.

www.manaraa.com

Physics-InformationInformationProcessing
Drinks Coins

ButtonsCoinsFig. 1. The machine and its physical interface.is physical: users insert coins and press buttonsand the machine heats water, mixes it with certainingredients and releases plastic cups �lled with theappropriate drink. In modern systems it is cus-tomary to decompose systems into two parts, thephysical interface and the information processingcomponent. The physical interface takes care ofthe transduction between energies of various formsand electronic signals. In our example it includesthe sensors which detect the pressing of a buttonor recognize the inserted coins, as well as theactuators which do the opposite transformationand implement the \decisions" of the machine toheat the water by turning on a heater or releasethe cup by, say, a pneumatic device. When weremove this envelope we obtain the second compo-nent, the information processing system, a systemwhich processes information signals regardless ofthe type of physical entities they represent.Digression: Since information processing is per-haps the most important common aspect of con-trol and computer science it is worth elaboratinga bit about it. We can write a reactive computerprogram which responds to an input event a by anoutput event b. Only the connection of the com-puter I/O ports to sensors and actuators will givean external physical meaning to the symbols a andb and to the I/O relation de�ned by the program:e.g. \respond to a mouse click by starting to playa CD" or \respond to a pressed button by launch-ing a missile". Similarly in the continuous worldthe same servo mechanism can be plugged intoa temperature sensor and a furnace to regulatetemperature, and equally well to a velocity sensorand a motor to regulate speed. The essence inboth types of systems is a mathematical relation-ship between inputs and outputs whose externalphysical meaning is de�ned by the envelope ofthe systems. For the information processing sys-tem the world consists of discrete or continuoussignals at its I/O ports, realized by low-energyelectricity. In the past, the distinction betweenthe physics and the information was not so sharp.For example, in Watt's governor the informationabout the rotational velocity was \transmitted"mechanically. Similarly, today when we press thethrottle or the brakes of our car we still representthe instructions that we give to the car (\faster",\slower") by physical magnitudes which are just

M1 54
6 M2 drink-readyst-teast-coffee321coin-in

cancel
coin-out

78
9

req-coffeereq-tea
resetok

done

Fig. 2. The information-processing component ofthe machine.ampli�ed along the way from the pedal down-wards. In the near future, however, using drive-by-wire techniques, the distinction will be moreapparent. 4From now on we restrict our attention to theinformation processing sub-system of machine Mand denote by E the environment of M , i.e. itsphysical interface. For simplicity we assume thatthere is only one type of a coin and two choicesof drinks, co�ee and tea, each costs one coin(the reader can make the exercise of extendingthe example to more complicated machines) andthat there is a button for canceling the operation.We decompose M further into two sub-machinesM1 and M2, the �rst interacts with the coincollection apparatus and the second with thechoice and preparation of drinks. In addition tothe interaction with the physical interface, thetwo machines should communicate: M1 shouldinform M2 about the reception of the requiredamount of money, while M2 should tell M1 thatthe drink delivery has been accomplished. A blockdiagram of the machines appears in Figure 2. Thetransfer of information between the components isdone via 9 communication ports described in thefollowing table.Port From!To Event types Meaning1 E ! M1 coin-in a coin was inserted2 E ! M1 cancel cancel button pressed3 M1 ! E coin-out release the coin4 M1 ! M2 ok su�cient money inserted5 M1 ! M2 reset money returned to user6 M2 ! M1 done drink distribution ended7 E ! M2 req-coffee co�ee button pressedreq-tea tea button pressed8 E ! M2 drink-ready drink preparation ended9 M2 ! E st-coffee start preparing co�eest-tea start preparing teaThe dynamics of the two machines is depicted inFigure 3 using the formalism of automata, alsoknown as �nite-state machines. 5 Devices havingseveral states, and which move from one state toanother upon the occurrence of certain events,4 This corresponds to the appearance of specialized nervecells in living organisms. It may correspond to many otherphenomena such as language, communication networks,etc. that take us further away from physics/geometry toinformation.5 In the sequel we will use also the terms discrete dynam-ical systems and transition systems for talking about thesame objects.

www.manaraa.com

done/0 1coin-in/ ok
cancel/coin-out, reset

drink-ready/done

drink-ready/done
A CB D

ok/reset/

M1

M2
req-coffee/st-coffeereq-tea/st-tea

Fig. 3. The two machines M1 and M2.have become part of the daily life of people livingin the beginning of the 21st century. Almostevery one of us has experienced such machineswhile withdrawing cash, setting a digital clock ormaking choices in front of graphical or vocal menusystems.Machine M1 has 2 states. In the initial state 0it ignores all but the coin-in event and uponits reception it moves to state 1 while emittingok. This indicates to machine M2 that the rightamount of money has been inserted. MachineM1 returns to state 0 either upon receiving thesignal done from machine M2 (this means thatthe procedure is over and it is ready to acceptmoney from the next customer). In addition, ifthe customer presses the cancel button while atstate 1, the machine moves to state 0 and emitstwo events: coin-out to release the money, andreset which returns machine M2 into its initialstate as well.MachineM2 stays in its initial state A and ignoresall inputs as long as it does not receive the okevent from M1. Once it receives the ok it movesto state B, and from there upon reception of eventreq-coffee (resp. req-tea) it moves to state C(resp. D) and emits the event st-coffee (resp.st-tea) which initiates the physical process whichprepares the respective drink. Upon receiving theevent drink-ready from the preparation machine,machine M2 moves from C or D back to A whilesending the event done to M1.The transition arcs between states are sometimeslabeled by input/output actions. This meansthat the machine in question can perform thetransition only if it recieves input from its outsideenvironment (which may include other machines)and while doing so it emits output. This is theway one machine (or the external evironment) canin
uence the behavior of another machine. Forexample, M1 can move from 0 to 1 only upon

the reception of coin-in from E. Similarly itcan move from 1 to 0 only if either it receivesdone from M2 or cancel from E. Such means ofcoordinating the behaviors of several machines arecalled synchronization mechanisms.When two or more machines are working together,they constitute a global system whose states aretuples consisting of the local states of each ma-chine. For example, the composition 6 of M1 andM2, denoted by M = M1jjM2, is an automatonwhose initial state is 0A. An automaton can movefrom one global state to another if all its com-ponents can take the corresponding transitions.For example, M can move from 0A to 1B uponreceiving coin-in becauseM1 can move from 0 to1 while emitting ok which makes M2 move to B.For this reason, a global transition from 0A to 0Bis impossible. MachineM appears in Figure 4, andby looking at it we can see paths that correspondto potential behaviors. For example the path0A coin-in 1B cancel coin-out 0Acorresponds to a customer who changed his mindand got his money back. Similarly, the path0A coin-in 1B req-coffee st-coffee1C drink-ready 0Arepresents a full cycle of the normal operation ofthe machines. But looking at the state-transitiongraph we can see also unexpected behaviors. Forexample, what happens if the user enters coin-in,then req-coffee and then, before the arrivalof drink-ready, she pushes the cancel button?According to the path0A coin-in 1B req-coffee st-coffee 1C cancelcoin-out 0C drink-ready 0Athe machine will move to state 0C and the userwill get the money back while the process initiatedby st-coffee keeps on going. This bug can bequite unpleasant to the machine owner and itsexistence is not evident at a �rst sight by lookingat the two machines separately. Imagine how hardit is to �nd such bugs in large systems composed ofmany interacting machines and whose behaviorsconsist of enormous nunbers of non-trivial andlong sequences of events.In order to �x the bug we add a new state 2 tomachineM2 (Figure 5). This is a \no-return" statewhich M2 enters upon receiving a lock messagefrom M1 after the user has selected the drink andthe prepartion has started. In Figure 6 we can seethe global system which, indeed, generates onlyacceptable behaviors.6 Since I don't give a formal de�nition of synchronizationmechanisms and of composition, there are some impreci-sions in the example which can be discovered by readerswho try to build the product | a recommended activityby itself. Please complain to the author about it.

www.manaraa.com

0A 1B
drink-ready/

drink-ready/

1C
1D

0C
0D

coin-in/cancel/coin-out cancel/coin-outcancel/coin-out
req-coffee/st-coffee
req-tea/st-tea

Fig. 4. The machine M =M1jjM2.
0 1coin-in/ ok 2lock/cancel/coin-out, resetdone/

drink-ready/done

drink-ready/done
A CB Dreset/ req-coffee/st-coffee,lockreq-tea/st-tea,lock

M2

M1

ok/
Fig. 5. The two machines M1 and M2 after �xingthe bug.

0A 1B
drink-ready/

drink-ready/

2C
2D

req-coffee/st-coffeereq-tea/st-teacoin-in/cancel/coin-out
Fig. 6. The well-behaving product of M1 and M2.The moral of this story is summarized as follows:(1) There are numerous systems of practical in-terest that can be modeled as a product ofmany interacting discrete components. Theglobal model for such a system is a �nite but,possibly, very large automaton.(2) The set of all possible behaviors of such asystem, in the presence of all admissibe inputsequences, is represented by paths in theglobal transtion graph.(3) The desired behavior of such a system canbe speci�ed as a set of allowed sequences ofstates and events.

(4) Proving that the system is correct amountsto showing that all sequneces generated bythe system are those allowed by the speci�-cation.
3. DISCRETE SYSTEMSIn this section I will present in a semi-formal man-ner some of the \systems theory" for discrete sys-tems, especially those parts motivated by solving(4) above. Interested readers can consult bookssuch as McMillan (1993); Kurshan (1994); Mannaand Pnueli (1995); Clarke et al. (1999). I willconsider three models of discrete systems whichcorrespond roughly to the notions of simulation,veri�cation and controller synthesis. At the �rstlevel of modeling we will consider closed systemssuch that given an initial state x0, the state ofthe system is determined for every time t. At thesecond level, we add an input domain V , a�ectingthe dynamics of the system. We interpret thisdomain as uncnotrollable inputs (disturbances)to the system, i.e. in
unences coming from theexternal environment. Finally, at the third level ofmodeling we consider an additional input domainU , corresponding to the controller's actions. Asystem with two inputs can be seen as a two-person game and controller synthesis | as �ndinga winning strategy.While I tell the discrete side of the story, thereader is aksed to think about the possible analo-gies with continuous systems, analogies that willbe made explicit later (see also Maler (1998)).

3.1 Model I: Closed SystemsWe start with systems which are not exposedto external in
uence and their future evolutiondepends exclusively on their current state.De�nition 1. (System D-I). A transition systemis S = (X; �) where X is a �nite set and � : X !X is the transition function.The state-space of the system, X, is usually a setwithout any additional structure, i.e. it does notadmit metric or order. We keep in mind that itmight be a Cartesian product of several domainsbut we do not take this fact into consideration.We use X� to denote the set of all sequences(�nite or in�nite) over X and Xk for seqeuncesof length k. Automata are presented as directedgraphs with states as nodes and with edges of theform (x; x0) whenever x0 = �(x) (see Figure 7).We stress again that the embedding of this graphon the two-dimensional page is arbitrary and doesnot carry any geometrical meaning (unlike phase-portraits of continuous systems).

www.manaraa.com

x1 x2
x3

x4
x5Fig. 7. A deterministic automaton.De�nition 2. (Behavior). Given a system S =(X; �), the behavior of S starting from an initialstate x0 2 X, is a sequence� = �[0]; �[1]; : : : 2 X�such that �[0] = x0 and for every i,�[i+ 1] = �(�[i]):Given a description of a dynamical system, themost natural thing to ask is how it will behavestarting from some initial state. In many cases,we are particularly interested in avoiding a certainset of \bad" states.De�nition 3. (Basic Reachability Problem). Thebasic reachability problem for a system S is: givenx0 and a set P � X, does the behavior of Sstarting at x0 reach P? In other words: does thereexist a time t such that �[t] 2 P .For deterministic �nite automata the problem ap-pears to be trivial (just look at the automaton)but the reader should remember that, as in theco�ee-machine example, S is not given explic-itly but as a product of interacting automata,a description from which the answer cannot bederived just by inspection. The following simplealgorithm solves this problem by computing allthe states reachable from x0. In fact, it is nothingbut a \simulation" of the (single) behavior of Sstarting from x0 combined with memorization ofthe visited states. The algorithm produces a setF� consisting of all states reachable from x0. Thisset can then be tested for intersection with P .Algorithm 1. (Forward Simulation/Reachability).

�[0]:=x0F 0 := fx0grepeat�[k + 1]:=�(�[k])F k+1 := F k [f�[i+ 1]guntil F k+1 = F kF�:=F k
For �nite-state deterministic systems every be-havior is ultimately-periodic, i.e. a sequence that

can be written as r � s! where r and s are �nitesequences denoting, respectively, the pre�x andthe period of �. For the automaton of Figure 7,the behavior starting from x1 is x1 � (x2x3x5)!and the algorithm produces the sequence of setsfx1g; fx1; x2g; fx1; x2; x3g; fx1; x2; x3; x5g:Since �(x5) = x2, the next iteration does not addnew states and the algorithm terminates.Algorithm 1 solves the reachability problem byforward simulation. Alternatively we could startfrom P and go backward to determine all the statesfrom which the system can reach P (a kind of \do-main of attraction"). Going backwards may intro-duce non-determinism and we will discuss it in thenext section. Note that unlike systems de�ned bydi�erential equations, discrete transition systemsare rarely reverse-deterministic (going backwardsfrom x5 you can reach both x3 and x4).Finiteness plays an important role in this setting:the transition function, the set P , and the setsF k of reachable states accumulated during thesimulation can all be enumerated explicitly andbe stored in �nite data-structures. Finiteness alsoguarantees the convergence of the algorithm. Ifwe relax the �niteness condition and allow acountable state-space the above does not holdanymore. A discussion of in�nite-state systemsappears in the next section.The analog problem for continuous systems wouldbe to check whether the solution of _x = f(x)starting from x0 intersects with some given subsetP � Rn . This subset can be, for example, apolyhedron or an ellipsoid. Note that we do notrestrict the question to the limit behavior but askalso about transient states.
3.2 Model II: Systems with One InputDe�nition 4. (System D-II). A one-input transi-tion system is S = (X;V; �) where X and V are�nite sets and � : X � V ! X is the transitionfunction.The evolution of a type II system starting froma state depends on the external in
uence of theinput. For example, in the system of Figure 8�(x1; v1) = x2 while �(x1; v2) = x3. Hence thereis not one behavior starting from any given statebut rather a behavior associated with every inputsequence.De�nition 5. (Behavior Induced by Input). Givena system S = (X;V; �) and an input sequence 2 V �, the behavior of S starting from x0 2 Xin the presence of is a sequence�() = �[0]; �[1]; : : : 2 X�

www.manaraa.com

v1
v2

v2v1
v1 v1
v2 v2x1 x2

x3
x4
x5

v1; v2
Fig. 8. An automaton with input.such that �[0] = x0 and for every i,�[i+ 1] = �(�[i]; [i]):In the automaton of Figure 8, an input startingwith v1; v2; v2; v1; v1 generates a behavior startingwith x1; x2; x3; x5; x2; x4, a fact that can be de-noted as:x1 v1�! x2 v2�! x3 v2�! x5 v1�! x2 v1�! x4:The reachability problem for such an open systemcan be rephrased as: Is there some input sequence 2 V � such that �() reaches P?To understand the various approaches for solvingthis problem, let us look at the set of all be-haviors of a type II system, a set which admitsa tree structures where each branch representsthe behavior induced by the corresponding inputsequence (Figure 9). If we want to preserve thesimulation approach we can modify Algorithm 1to have the sequence 2 V � as an additionalargument. The behavior of the system in the pres-ence of can then be constructed incrementally.Moreover, if a state is reachable in an n-stateautomaton then it is reachable by a path of lengthsmaller than n. So if we feed Algorithm 1 with a�nite sequence 2 V n, we obtain the set F�()of states reachable by �(). By lettingF� = [�2V n F�()we obtain all reachable states for all possible in-puts. This exhaustive simulation technique can beseen as generating an input sequence for everybranch of length n in the execution tree. Howeverthe number of such sequences is jV jn and, giventhat n itself might be prohibitively large (expo-nential in the number of system components), thisoption is not so attractive.While this simulation approach is suitable for\black box" testing, it is rather wasteful whenwe have the structure of the automaton at ourdisposal. For the reachability problem we need notexplore the successors of the same state more thanonce: since both v2 and v1v2 lead to the samestate x3, we know that for every input , thesequences v2 � and v1v2 � will lead to the same

v1 v2x4
x5 x5 v2v1 x3

x4 x5

v1 v2
v1 v2

v1 v2 v1 v2
v1 v2x3
x1

x2 x3 x5x2

x1
x2

x5
Fig. 9. An initial part of the execution tree of thetype II system of Figure 8.state. 7 Hence we can apply more e�cient searchalgorithms to the transition graph at the price oflosing some of the intuitive
avor of simulation.To this end let us denote by �(x) the set of allimmediate successors of x, i.e.�(x) = fx0 : 9u �(x; u) = x0gand extend this notation to sets of states by letting�(F) = f�(x) : x 2 Fg. The following algorithmcomputes all reachable states of a type II system:Algorithm 2. (Forward Reachability).F 0 := fx0grepeatF k+1 := F k [�(F k)until F k+1 = F kF�:=F k
In essence this is a graph search algorithm andits complexity is O(n � logn � jV j) | much betterthan the simulation-based approach. This algo-rithm explores the transition graph in a breadth-�rst order and every F k consists of the statesreachable after at most k transitions. It can beviewed as running many simulations in paralleland aborting a simulation when it reaches a statealready visited by one of the simulations. One canwrite a depth-�rst variant of this algorithm whichexplores a branch of the tree until a previously-visited state is encountered and then backtracks(\rolling back" the simulation) and tries anotherbranch. The sets of tree nodes explored by thesetwo variants appear in Figures 10 and 11, respec-tively.As mentioned earlier, verifying whether some be-havior reaches a set P can also be done backwards.Let ��1(x) = fx0 : 9u �(x0; u) = xg7 This is, in fact, the meaning of the notion of a state inthe modern theory of dynamical systems.

www.manaraa.com

v1 v2
v1 v2

v1 v2x3
x5x2

x1
x2

x5v1 v2x4
x5 x5

x3 x1
v1 v2

Fig. 10. Nodes explored by the forward reachabil-ity algorithm in breadth-�rst search regime.The dashed line indicates the frontier be-tween the �rst and subsequent occurrencesof states during the exploration.
v1

v1 x3x2
v1 v2x4
x5 x5 v2v1 x3

x4 x5v1 v2x5x2
x5

x1 v2

Fig. 11. Nodes explored by the forward reachabil-ity algorithm in depth-�rst search regime.be the set of immediate predecessors of x andlet ��1(F) be its obvious extension to sets. Thefollowing algorithm computes the set of all statesfrom which there is an input that drives thesystem into P . If this set includes x0 the answerto the reachability problem is positive.Algorithm 3. (Backward Reachability).F 0 := PrepeatF k+1 := F k [��1(F k)until F k+1 = F kF�:=F k
Theorem 1. (Algorithmic Veri�cation). There arealgorithms that take a description of a type IIsystem and verify whether any of the admissibleinputs drives the system into a set P . Such algo-rithms always terminate after a �nite number ofsteps.

v1
v2

v2v1 v1
v2 v2x1 x2

x3 x5

v1v2
v2

Fig. 12. A model of a restricted environment(above) and the result of composing it withthe automaton of Figure 8, assuming x1 asinitial state.Of course \�nite" can be very large and eventoo large, but the signi�cance of this result is inits generality: it applies to any system that canbe written as a product of �nitely many �niteautomata. Variants of Algorithms 2 and 3 andtheir e�cient implementations constitute most ofwhat algorithmic veri�cation is all about.Before moving to controller synthesis let us discussthe question of admissible inputs. So far it wasimplicitly assumed that the external environmentcan produce any sequence in V �. In many realis-tic situations the environment is constrained togenerate only a subset of V �. For example, itmight not produce two consecutive occurrencesof v1. Such an environment can be modeled byan automaton and the set of all behaviors in thepresence of such inputs is captured by the com-position of this automaton with the system (seeFigure 12). In such an environment, state x4 isnot reachable from x1. Likewise the co�ee machinewill never exhibit its bug in an environment whereno user would press the cancel button once theco�ee started pouring.The analogous problem for continuous systemswould be: given a system de�ned by the equation_x = f(x; v) where v ranges over some set ofadmissible input signals, check whether there issome signal which drives the system into a set P .
3.3 Model III: Systems with Two InputsDe�nition 6. (System III-D). A two-input transi-tion system is S = (X;U; V; �) where X, U andV are �nite sets and � : X � U � V ! X is thetransition function.A type III system appears 8 in Figure 13. Thebehavior of the systems in the presence of two8 To understand the graphical conventions note that�(x1; u1; v1) = x1, �(x1; u1; v2) = x2, �(x1; u2; v1) = x2

www.manaraa.com

u1 u1 u1
u2

u2
u2

v1 v2

v2v1 v2
v2

v1 v2
v1 v2

v2 v1u2v1u1v1; v2v1
x2
x3 x5

x4x1

Fig. 13. A type III system with U = fu1; u2g andV = fv1; v2g.inputs, � 2 U� and 2 V � can be characterized asbefore by letting �(�;) be a sequence satisfying�[i+ 1] = �(�[i]; �[i]; [i])for every i. The main novelty here is in the di�er-ent interpretation we give to the two inputs. Weinterpret U as a set of control actions that we canselect from and V as uncontrolled disturbances.This model can be viewed as a game betweena controller U and an external environment V ,each trying to steer the system toward other partsof the state-space. Our goal is to �nd a winningstrategy, a rule that tells us which element of Uto choose at every reachable situation in order toguarantee that whatever the adversary V does,the induced behaviors satisfy some property. Thisis essentially the controller synthesis problem.De�nition 7. (Strategies).Let S = (X;U; V; �) be a type III system. Astrategy for U is a function c : X� ! U . A statestrategy is a strategy satisfying c(� � x) = c(�0 � x)for every � and �0 and hence it can be written asa function c : X ! U .For this discussion we restrict ourselves to statestrategies. Each strategy c converts a type IIIsystem into a type II system Sc = (X;V; �c) suchthat �c(x; v) = �(x; c(x); v).De�nition 8. (Synthesis for Reachability).Let S = (X;U; V; �) be a type III system and letP � X be a set of \bad" states. The controllersynthesis problem is: �nd a strategy c such thatall the behaviors of the derived system Sc =(X;V; �c) never reach P .The set of behaviors of a type III system is struc-tured as a game tree (also known as alternating,AND/OR or min-max tree). Due to space andtime constraints I will not say all that can beand �(x1; u2; v2) = x4. We assume that the choices of Uand V are made simultaneously.

said on this topic, whose formalization is not easydue to the two types of branching and the use offeed-back in the de�nition of a behavior given astrategy c.Consider the controller synthesis problem for thesystem of Figure 13 where the set of states to avoidis P = fx5g. Looking closer we see that from statex4 we cannot avoid the possibility of reaching x5:if we choose u1 the environment can choose v2and if we choose u2 the environment can choosev1 and in both cases the outcome will be x5. Onthe other hand, from x2 we can avoid reaching x5,at least for one step, by taking u2 rather than u1.This motivates the following de�nition:De�nition 9. (Controllable Predecessors).Let S = (X;U; V; �) be a type III system. The setof controllable predecessors of F � X�(F) = fx : 9u 2 U 8v 2 V �(x; u; v) 2 Fgdenotes all the states from which the controller,by properly selecting u, can force the system intoP in the next step.The following algorithm produces the set F� of\winning states", i.e. states from which reachingP can be forever avoided.Algorithm 4. (Controller Synthesis).F 0 := X � PrepeatF k+1 := F k \ �(F k)until F k+1 = F kF�:=F k
This algorithm, a variant of dynamic program-ming, when applied to the system of Figure 13,produces the decreasing sequence of statesfx1; x2; x3; x4g; fx1; x2; x3gand converges. In control terms the set fx1; x2; x3gis the maximal control invariant set. The corre-sponding strategy is c(x1) = u2, c(x2) = u2 andc(x3) = u1 and it is computed by erasing transi-tions that can lead outside F�. The resulting typeII system is depicted in Figure 14. This is verysimilar to the supervisory control of Ramadge andWonham (1989).This concludes the story of �nite-state discretesystems where simulation, veri�cation and con-troller synthesis can all be performed exactly in afully-automatic manner (modulo size limitations).The continuous analog of type III systems aredi�erential games 9 of the form _x = f(x; u; v). Be-9 Traditionally in di�erential games Isaacs (1965) onelooks for a continuous control law c : X ! U which

www.manaraa.com

u1 u2
v1 v2
v1 v2 u1v1; v2

x2
x3

x1

Fig. 14. The type II system which remains alwayswithin fx1; x2; x3g.fore moving to continuous systems, let us mentionwhat happens to discrete systems if we allow anin�nite state-space.
4. DISCRETE INFINITE-STATE SYSTEMSUnlike �nite transition systems which can be rep-resented enumeratively by �nite tables, in�nite-state systems need richer description formalismsthat express implicitly an in�nite transition graph.The fact that computer programs can be viewedas representations of discrete dynamical systemsis not part of the common knowledge of the gen-eral public, including control and even softwareengineers. In Computer Science, the dynamicalsystem associated with a program is often referredto as its operational semantics. As an example,consider the following simple program which usesone integer variable y:repeaty:=y + 1until y = 4This program can be seen as a transition systemover the state-space X � Z where X = fx1; x2gis the set of program locations (inside and afterthe loop) and Z is the set of possible values ofy1. Such systems, although in�nite, admit a �nitee�ective representation such as the above programor the equivalent extended automaton 10 at thetop of Figure 15. This is an automaton augmentedwith auxiliary variables which can be tested andmodi�ed by transitions. Such representations aree�ective in the sense that given any state it ispossible to compute the next-state but the reach-ability problem is not solvable. For example, aforward simulation algorithm such as Algorithm 1,when started from state (x1; 2) will converge tothe set F� = f(x1; 2); (x1; 3); (x1; 4); (x2; 4)g. Onthe other hand, starting from (x1; 5) the algorithmwill never terminate (see Figure 15).

optimizes some performance measure over all the behaviorsinduced by V , but synthesis for reachability can be easilybe framed as a special case of optimization with a 0�1 costfunction on behaviors according to whether they reach P .10Which is nothing but the good old
owchart.

x1
x2 4

6 : : :5432

y 6= 4/y:=y + 1x1 y = 4x2
: : :

Fig. 15. An in�nite-state system: an implicit rep-resentation (above) and a fragment of theexplicit transition graph (below).In general the reachability problem for in�nite-state systems is undecidable. This means thatthere is no general algorithm that takes any pro-gram with integer variables and solves its reach-ability problem. Note that the failure of Algo-rithm 1 to converge is not a proof of undecid-ability. The latter means that for any conceivablealgorithm there will be a program on which itwill fail to converge. For such systems all youcan do is to simulate forward until you reachP (\yes") or make a cycle (\no"), but none ofthese is guaranteed to happen. This notion allowstheoretical computer scientists to publish negativeresults concerning the provable inability to pro-duce certain algorithms.There are two basic approaches to tackle suchsystems. If we want to stick to the algorithmic ap-proach one needs to use symbolic rather then enu-merative representation of the reachable states,that is, to encode sets of states using some for-malism such as Boolean formulae combined withinequalities over numerical state variables. Forexample, the set of states reachable from (x1; 5)can be �nitely represented by the formula x = x1^y � 5. The computation of the reachable set isusually performed breadth-�rst by doing syntacticoperations on these formulae with some tricks toguarantee convergence, when possible. Even inthe �nite-state case symbolic techniques allow totreat systems with a number of states which isotherwise prohibitively large.Within the alternative deductive (or theorem-proving) approach, reachability properties are de-rived formally from axioms and rules concerningthe dynamics of the system. The main disadvan-tage of this approach from the CAD point ofview is that it is not fully-automatic, that is, onedoes not feed the computer with the descriptionof the system, pushes a button and obtains theresult. Even with the help of an automatic the-orem prover, an active participation of a human

www.manaraa.com

user who understands the dynamics of the sys-tem in question is required. The analog of thisapproach in continuous systems would be, forexample, proving a reachability property using auser-supplied Lyapunov function.Veri�cation of in�nite-state systems is currentlya very active domain of research, where combina-tions of algorithmic and deductive methods are in-vestigated including questions of homomorphisms(called \abstraction") from in�nite-state systemsto �nite ones. Some of the techniques for treatingnumerical variables are common to this domainand to continuous and hybrid systems.
5. CONTINUOUS SYSTEMSIn this section I sketch some of the problemsencountered while trying to export algorithmicveri�cation to continuous systems. A questionthat some readers will certainly pose is: \Whybother?" Indeed, with all this Control Theory,more than a century-old, employing all the ac-cumulated knowledge of continuous mathematics,equation solving, optimization and more, why usethese barbaric brute-force methods which do notexploit the special mathematical properties of thesystems in question? My short answer 11 is thatthere are systems which cannot be modeled in auseful manner with purely continuous formalismsand which are more adequately modeled usinghybrid automata, a combination of automata anddi�erential equations where each state of the au-tomaton represents one \mode" of operation. Forsuch systems most \classical" methods fail whilemethods based on algorithmic reachability mightwork.The state-space of continuous systems, X = Rn ,can be in�nite in two senses: it can be unbounded,like the state-space of programs over the integersbut, even if we restrict the analysis to boundedsubsets of Rn , we have to face dense in�nitude.The same goes for the time domain, T = R+ .Moreover, inside the computer we cannot workwith the ideal mathematical real numbers butrather with a �nite (but large) subset of therationals. This means that even the simulation ofa single behavior is a non-trivial matter.Consider the reachability problem for closed sys-tems of the form _x = f(x), whose discrete ana-logue has been shown to be trivially solvable usingforward simulation. When we have a closed formsolution, e.g. �[t] = x0eAt for linear systems, wecan claim to have \solved" the problem becauseF� = fx0eAt : t � 0g is a representation ofall reachable states. But then, how can we check11A longer answer can be found in the introduction toAsarin et al. (2000b).

P
x0

��0Fig. 16. A continuous behavior � that intersectsP while its numerical approximation �0 doesnot.whether F� \ P is empty where P is some simplesubset of Rn de�ned by, say, combination of linearequalities? From the point of view of e�ectivecomputation, such closed-form solutions are notmuch more explicit than the equations themselves.Alternatively we can try forward simulation. Forthis we need �rst to discretize the time domaininto a sequence T� = fn� : n 2 N g for some timestep � and then produce a partial approximationof the solution � by a sequence �0 : T� ! Xde�ned by some numerical integration scheme ofthe form�0[(n+ 1)�] = �0[n�] + h(�0[n�];�):Applying algorithm 1 we face two major problems:(1) We are interested in the setF� = f�[t] : t 2 Tgwhile what we compute isF 0� = f�0[t] : t 2 T�g:Hence a non-empty intersection of F� withP is not equivalent to such an intersectionbetween F 0� and P (see Figure 16).(2) The algorithm is not guaranteed to converge(like any in�nite-state system), and if it con-verges, i.e. �0[t] = �0[t0] for some t 6= t0,this might be due to rounding errors and notbecause �[t] = �[t0].It is clear from these observations that for contin-uous systems we cannot hope for the same strongand exact results as for �nite automata. However,the situation is not so dramatic becasue the con-tinuous world is less chaotic than the discrete one,and simulation can usually be used to increase ourcon�dence in the correctness of a closed determin-istic system. From now on we ignore the di�erencebetween � and �0 and consider simulation as asolved problem.For type II systems of the form _x = f(x; v) thesituation is more complicated. The set of admissi-ble inputs is typically the set of continuous signalsof the form : T ! V over some bounded set Vwhich we denote by V T . As in the discrete case we

www.manaraa.com

x0 x0

Fig. 17. The structure of the behavior of a contin-uous type II system: on the left we see someof the in�nitely many behaviors generated byadmissible inputs and on the right | the setof all states reachable by all the behaviors.can perform simulation for every individual inputsignal and compute the set F�() of reachablestates. However, unlike �nite-state systems of sizen where it is su�cient to simulate with all ele-ments of V n � V �, there is no �nite subset of V Twhich \covers" all reachable states. The structureof this set is a \doubly-dense" tree, both in thevertical/temporal dimension (due to the densityof T) and in the horizontal dimension (due to thedensity of V). Hence exhaustive generation of allinputs for simulation is not even an option.On the other hand, some approximate variantsof Algorithm 2 are possible. To understand that,let us look at Figure 17 where a sample of thebehaviors induced by some inputs is shown. Asin discrete systems, we need not explore all the(in�nitely-many) visits of trajectories in the samestate but rather �nd a way to construct F� in-crementally, not necesserily in a way that corre-sponds to simulation of individual behaviors.We use the notation x t�! x0 to indicate theexistence of an input signal : [0; t] ! V suchthat the behavior �() starting at x reaches x0at time t. Let F be a subset of X and let I bea time interval. The I-successors of F are all thestates that can be reached from F within thattime interval, i.e.�I(F) = fx0 : 9x 2 F 9t 2 I x t�! x0g:Note that �[0;1) denotes all the states reachablefrom F . Assuming that admissible inputs do notdepende on x, � has the semi-group property, i.e.�I2(�I1(F)) = �I1�I2(F)where � is the Minkowski sum and, in particular,�[0;r2](�[0;r1](F)) = �[0;r1+r2](F):If we had a procedure for computing �[0;r], wecould construct incrementally the set of reachablestates using the following algorithm:

x0 x0

Fig. 18. The incremental construction of reachablesets using an approximate version of Algo-rithm 5 (left) and the �nal result, an over-approximation of the reachable states (right).Algorithm 5. (Continuous Reachability).F 0 := fx0grepeatF k+1 := F k [�[0;r](F k)until F k+1 = F kF�:=F k
This algorithm su�ers from the same problemsas simulation, namely the inability to compute �exactly and the lack of guarantee for convergence.In addition, it has to maintain representationsof subsets of Rn on which the operation � aswell as union and equivalence testing should beapplied. To overcome these problems we proposea pragmatic solution which is based on restrictingthe algorithm to work on polyhedra and use anapproximate version �0 of the sucessor operatorsuch that for every F�[0;r](F) � �0[0;r](F):For technical reasons not to be discussed here,reachable sets are stored as orthogonal polyhedra,a sub-class of polyhedra which can be written as�nite unions of hyper-rectangles, see Bournez etal. (1999). Under these conditions an approximateversion of Algorithm 5 can be implemented whoseoutcome F 0� is an over-approximation of F� (seeFigure 18). Hence F 0� \ P = ; implies thatall behaviors of the system under all admissibleinputs never reach P .Variants of Algorithm 5 were implemented byDang (2000) in a prototype tool called d=dt.These algorithms employ two techniques for ap-proximating �. One technique, inspired by Green-street (1996), is called \face lifting" and is basedon maximizing normal derivatives of f on the facesof the polyhedron, see Dang and Maler (1998). Itapplies to arbitrary non-linear systems. The other,more e�cient technique is specialized for linear

www.manaraa.com

systems, see Asarin et al. (2000a), and uses someoptimal control ideas, proposed by Varaiya (1998).A similar technique was developed independentlyby Chutinan and Krogh (1998, 1999). Other ap-proaches to solve reachability problems use ellip-soids instead of polyhedra, e.g. Kurzhanski andValyi (1997); Botchkarev and Tripakis (2000) ortry to apply ideas from the numerical solutionof partial di�erential equations, e.g. Mitchell andTomlin (2000).For type III systems, di�erential games de�nedby _x = f(x; u; v), no reachability based tech-niques have been developed yet, although thereare some ideas. In Asarin et al. (2000b) a solutionof the simpler problem of synthesizing a switch-ing controller was proposed and implemented. Anexperimental application of d=dt to control byswitching was recently reported in Asarin et al.(2001). To be honest, much work is still to be donebefore such techniques can be used in practicefor systems of high dimension. Readers who wantto experiment with these techniques are welcometo download d=dt and try it on their favoriteexamples.
ReferencesAsarin, E., O. Bournez, T. Dang and O. Maler(2000a). Approximate reachability analysis ofpiecewise-linear dynamical systems. In: HybridSystems: Computation and Control (B. Kroghand N. Lynch, Eds.). Lecture Notes in Com-puter Science 1790. Springer-Verlag. pp. 20{31.Asarin, E., O. Bournez, T. Dang, O. Maler andA. Pnueli (2000b). E�ective synthesis of switch-ing controllers for linear systems. Proceedings ofthe IEEE 88, 1011{1025.Asarin, E., S. Bansal, B. Espiau, T. Dang andO. Maler (2001). On hybrid control of under-actuated mechanical systems. In: Hybrid Sys-tems: Computation and Control. to appear inLecture Notes in Computer Science. Springer-Verlag.Botchkarev, O. and S. Tripakis (2000). Veri�-cation of hybrid systems with linear di�er-ential inclusions using ellipsoidal approxima-tions. In: Hybrid Systems: Computation andControl (B. Krogh and N. Lynch, Eds.). Lec-ture Notes in Computer Science 1790. Springer-Verlag. pp. 73{88.Bournez, O., O. Maler and A. Pnueli (1999). Or-thogonal polyhedra: Representation and com-putation. In: Hybrid Systems: Computation andControl (F. Vaandrager and J. van Schuppen,Eds.). Lecture Notes in Computer Science 1569.Springer-Verlag. pp. 46{60.Chutinan, A. and B.H. Krogh (1998). Comput-ing polyhedral approximations to dynamic
owpipes. In: Proc. of the 37th Annual Interna-

tional Conference on Decision and Control,CDC'98. IEEE.Chutinan, A. and B.H. Krogh (1999). Veri�cationof polyhedral invariant hybrid automata usingpolygonal
ow pipe approximations. In: HybridSystems: Computation and Control (F. Vaan-drager and J. van Schuppen, Eds.). LectureNotes in Computer Science 1569. Springer-Verlag. pp. 76{90.Clarke, Edmund M., Orna Grumberg andDoron A. Peled (1999). Model Checking. TheMIT Press. Cambridge, Massachusetts.Dang, T. (2000). Veri�cation and Synthesis ofHybrid Systems. PhD thesis. Institut NationalPolytechnique de Grenoble, Laboratoire Ver-imag.Dang, T. and O. Maler (1998). Reachability anal-ysis via face lifting. In: Hybrid Systems: Compu-tation and Control (T.A. Henzinger and S. Sas-try, Eds.). Lecture Notes in Computer Science1386. Springer-Verlag. pp. 96{109.Greenstreet, M.R. (1996). Verifying safety prop-erties of di�erential equations. In: ComputerAided Veri�cation, CAV'96 (R. Alur and T.A.Henzinger, Eds.). Lecture Notes in ComputerScience 1102. Springer-Verlag. pp. 277{287.Isaacs, R. (1965). Di�erential Games : A Math-ematical Theory With Applications to Warfareand Pursuit, Control and Optimization. Wiley.Kurshan, R. (1994). Computer-aided Veri�cationof Coordinating Processes: The Automata-Theoretic Approach. Princeton UniversityPress.Kurzhanski, A. and I. Valyi (1997). Ellip-soidal Calculus for Estimation and Control.Birkhauser.Maler, O. (1998). A uni�ed approach for studyingdiscrete and continuous dynamical systems. In:Proc. of the 37th Annual International Confer-ence on Decision and Control, CDC'98. IEEE.Manna, Z. and A. Pnueli (1995). Temporal Veri-�cation of Reactive Systems: Safety. Springer.McMillan, K.L. (1993). Symbolic Model Checking.Kluwer Academic.Mitchell, I. and C. Tomlin (2000). Level setmethod for computation in hybrid systems.In: Hybrid Systems: Computation and Control(B. Krogh and N. Lynch, Eds.). Lecture Notesin Computer Science 1790. Springer-Verlag.pp. 311{323.Ramadge, P.J. and W.M. Wonham (1989). Thecontrol of discrete event systems. Proc. of theIEEE.Varaiya, P. (1998). Reach set computation usingoptimal control. In: Proc. KIT Workshop, Ver-imag, Grenoble. pp. 377{383.

